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This paper develops a unified methodology for obtaining both the general equations of
motion describing the rotational dynamics of a rigid body using quaternions as well as its
control. This is achieved in a simple systematic manner using the so-called fundamental
equation of constrained motion that permits both the dynamics and the control to be
placed within a common framework. It is shown that a first application of this equation
yields, in closed form, the equations of rotational dynamics, whereas a second application
of the self-same equation yields two new methods for explicitly determining, in closed
form, the nonlinear control torque needed to change the orientation of a rigid body. The
stability of the controllers developed is analysed, and numerical examples showing the
ease and efficacy of the unified methodology are provided.
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1. Introduction

Traditional methods of controlling multi-body systems rely first on the
development of the equations of motion of the system using the underlying
principles of mechanics, and then on the development of the control design based
on the underlying principles of control theory. This paper explores a unified
approach based on Lagrangian mechanics to both the rotational dynamics and
control of a rigid body. While the framing of Lagrange’s equations of rotational
motion in terms of quaternions has been carried out in the past (Nikravesh et al.
1985; Morton 1993; Udwadia & Schutte 2010a,b), it appears that Lagrange’s
formulation has not received much use in conventional rotational dynamics
and control analysis. In contrast to past developments, the Lagrange equation
of rotational motion derived in this paper is obtained by applying a simple
three-step procedure that yields the equations of motion for general constrained
mechanical systems. The key element in this three-step procedure is the use
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of the fundamental equation of constrained motion (Udwadia & Kalaba 1992,
1996) as demonstrated by Schutte & Udwadia (2011). In sequence, we then use
the same methodology to carry out the nonlinear control design for rigid body
rotational manoeuvres, thereby revealing a general and unifying framework for
both dynamical modelling and nonlinear control design.

In the first part of the paper, using the fundamental equation of constrained
motion, we derive an explicit formulation for rigid-body rotational dynamics by
considering the unit quaternion as the generalized coordinate. Using the same
general approach used to develop the rigid body equations of motion, we then
develop a methodology for the rotational control of a rigid body. Consequently, we
obtain, in closed form, the explicit control torque needed to control the orientation
of a rigid body from any initial, at rest, orientation to any desired, at rest,
orientation. This general methodology for developing closed-form controllers can
be implemented in various ways, and in this paper two control strategies are
presented for illustration. The first control strategy deals with simultaneously
enforcing the quaternion unit norm constraint requirement along with the
trajectory requirements needed to reach the desired orientation. The second
control strategy enforces the necessary trajectory requirements independently
from the unit norm requirement. In particular, it uses the permissible control
structure developed by Schutte (2010) to apply the required nonlinear control
torque. In permissible control form, the explicit control design space is arbitrary
while the satisfaction of the quaternion unit norm requirement is guaranteed.

The closed-form equations of the nonlinear controllers make them amenable
to detailed stability analysis. In terms of both rotational controllers, a detailed
stability analysis is performed for the explicitly obtained equations of motion of
the controlled rigid body. Numerical computations are also carried out to validate
the analytical results for reorienting a rigid body that starts and ends at rest,
illustrating the ease and efficacy with which the control methodology works.

2. Rotational dynamics using quaternions

Consider the problem of a rotating rigid body. For simplicity, we will assume that
a right-handed coordinate frame FB is attached to the body with origin at the
body’s centre of mass. The coordinate frame FB is related to an inertial frame of
reference FN by the rotational transformation

FN = S(t)FB , (2.1)

where S is an orthogonal rotation matrix. The elements of S are the direction
cosines relating the basis vectors of FB to those of FN . We can express the matrix
S as a function of the elements of a unit quaternion

u = u0 + u1i + u2j + u3k = (u0, u) (2.2)

by first considering the quaternion rotation operator

xN = uxBu∗, (2.3)

where xN = (0, xN ) is a pure quaternion and xN is a 3-vector whose components
are those of a material point of the rigid body in the frame FN . Similarly,
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the pure quaternion xB = (0, xB) contains the 3-vector xB whose components
are in the frame FB . In equation (2.3), u∗ is the quaternion conjugate; i.e.
u∗ = (u0, −u). Using vector notation, the quaternion u = [u0, uT]T is defined as
a unit quaternion if

f(u) := uTu − 1 = 0. (2.4)

In accordance with the rules of quaternion multiplication, we can write
equation (2.3) in matrix–vector notation so that

xN = [(2u2
0 − 1)I3 + 2uuT + 2u0ũ]xB := S(u)xB , (2.5)

where I3 is the 3 × 3 identity matrix and (·̃) is a skew-symmetric matrix containing
the elements of the three vector (·). It follows that the time rate of change
of equation (2.5) along with the orthogonality property STS = I3 gives the
classical definition

ẋN = S(STṠ)xB := S ũxB , (2.6)

where u ∈ R
3 is the absolute angular velocity of the rigid body with components

in FB . In terms of the unit quaternion u, equations (2.5) and (2.6) yield the
transformation

u = 2[−u, u0I3 − ũ]u̇ := Hu̇. (2.7)

The inverse relationship for a unit quaternion can be found as

u̇ = 1
4
H Tu. (2.8)

Finally, using equation (2.4) and the definition of the 3 × 4 matrix H , it will be
useful to define the identities

Hu = Ḣ u̇ = Hu̇ + Ḣ u = 0 (2.9)

1
4
H TH = I4 − uuT (2.10)

1
4
HH T = I3 (2.11)

and Ḣ T = 1
2
H Tũ − uuT. (2.12)

Without loss of generality, we now assume that the body-fixed coordinate axes
FB are aligned along the principal axes of inertia of the rigid body whose principal
moments of inertia are Ji , i = 1, 2, 3. Using equation (2.7), the kinetic energy of
the rotating body is given by

T = 1
2

uTJu = 1
2
u̇TH TJH u̇ = 1

2
uTḢ TJ Ḣu, (2.13)

where the inertia matrix of the rigid body is defined as J = diag(J1, J2, J3). This
leads us to the central three-step procedure for determining the equation of
motion of the rotating body (Schutte & Udwadia 2011).

The first step requires the development of the unconstrained equations of
motion. To get these equations, we first assume that all the rotational coordinates
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that describe the configuration of the rigid body are independent of each other
and then apply Lagrange’s equation

d
dt

(
vT
vu̇

)
− vT

vu
= Gu . (2.14)

Here, Gu ∈ R
4 is an arbitrary generalized torque vector acting on the rigid body,

which we shall describe in detail a bit later. Noting that vT/vu̇ = H TJH u̇ and
using equation (2.9), we have

d
dt

(
vT
vu̇

)
= H TJH ü + Ḣ TJH u̇ and

vT
vu

= Ḣ TJ Ḣu = −Ḣ TJH u̇. (2.15)

Thus, the unconstrained equation of motion of the rotating rigid body is simply

M (u)ü := H TJH ü = Gu − 2Ḣ TJH u̇ := Q(u, u̇). (2.16)

We note that the mass matrix M in equation (2.16) is positive semi-definite
(M ≥ 0) as H is a 3 × 4 matrix. Therefore, M is not invertible as it is singular.

In the second step for obtaining the requisite equation of motion, we need
to discern the constraints that appropriately model the system. In this step,
the number of consistent constraints allocated may exceed the minimum number
required. Here, we only have the coordinate constraint given by equation (2.4).
Differentiating twice with respect to time, we can write equation (2.4) in the form

A(u)ü := uTü = −N (u̇) := b(u̇), (2.17)

where N (·) denotes the inner product of its argument.
The third and final step of the three-step procedure uses the unconstrained

equations of motion (equation (2.16)) and the constraints (equation (2.17))
to obtain the correctly modelled constrained equations of motion. Under the
condition that the matrix (Udwadia & Phohomsiri 2006)

M̂ = [M , AT]T = [H TJH , u]T (2.18)

has full rank, this third step is carried out by first creating the auxiliary system
(Udwadia & Schutte 2010a,b)

Mü := (M + xA+A)ü = Q + A+b := Q, (2.19)

where x > 0 is a scalar and (·)+ denotes the Moore–Penrose matrix inverse. As
M̂ does indeed have full rank, the constrained equation of motion of the rotating
rigid body can be found using the fundamental equation so that (Udwadia &
Kalaba 1996)

Mü = Q + M1/2(AM−1/2)+(b − AM−1Q). (2.20)

To obtain equation (2.20) explicitly, one can show that

Mk = 22(k−1)H TJ kH + xkuuT, k = ±1
2
, ±1. (2.21)

Then, using equation (2.9), we obtain

M1/2(AM−1/2)+ = xu (2.22)
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as (x−1/2uT)+ = x1/2u. Again using equation (2.9), we also obtain the relation

b − AM−1Q = −1
x
uTGu − 2

x
u̇TH TJH u̇ − N (u̇)

(
1 − 1

x

)
. (2.23)

Substituting equations (2.22) and (2.23) into equation (2.20), we can then write

(H TJH + xuuT)ü = (I4 − uuT)Gu − 2Ḣ TJH u̇ − 2(u̇TH TJH u̇)u − xN (u̇)u.
(2.24)

This is the explicit Lagrange equation of a rotating rigid body in terms of the
unit quaternion that describes its orientation.

The positive non-zero scalar x in equation (2.24) is arbitrary. It can be suitably
chosen to improve the condition number c of the matrix M. This condition
number is given by

c(M) = ‖M‖‖M−1‖ = ‖H TJH + xuuT‖‖16−1H TJ −1H + x−1uuT‖ ≥ 1, (2.25)

where we define ‖ · ‖ as the matrix spectral norm. As

‖H TJH + xuuT‖ ≤ ‖H TJH‖ + x‖uuT‖ (2.26)

and
‖16−1H TJH + x−1uuT‖ ≤ 16−1‖H TJ −1H‖ + x−1‖uuT‖, (2.27)

an upper bound on the condition number c is given by

c(M) = ‖M‖‖M−1‖
≤ 16−1‖H TJH‖‖H TJ −1H‖

+ (x−1‖H TJH‖ + 16−1x‖H TJ −1H‖)‖uuT‖ + ‖uuT‖2. (2.28)

By choosing x, we can minimize this upper bound by minimizing the second
member on the right-hand side in the above equation with respect to x. The
extremum of this member is found by setting

v

vx
(x−1‖H TJH‖ + 16−1x‖H TJ −1H‖) = 0, (2.29)

which yields for x > 0 the value

x̄ =
√

16‖H TJH‖
‖H TJ −1H‖ . (2.30)

This value of x can be easily shown to minimize the second member in
equation (2.28), as the second derivative with respect to x is positive. Thus, a
suitable value of x is found that makes numerical computations stable by yielding
a bound on the condition number of the matrix M. For x = x̄, the bound on the
condition number is then simply

c(M) ≤
(

1 + 1
4

√
‖H TJH‖‖H TJ −1H‖

)2

(2.31)

as ‖uuT‖ = 1.
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Equation (2.24) also informs us—and this does not seem to be widely
recognized—that the generalized torque Gu must appear in the form (I4 − uuT)Gu .
Furthermore, because I4 = (I4 − uuT) + uuT, post-multiplying this relation by Gu ,
we find that

Gu = (I4 − uuT)Gu + u(uTGu). (2.32)

Thus, uTGu is the component of the generalized torque 4-vector, Gu , in the
direction of the unit vector u, and as it vanishes in equation (2.24), it has no
effect on the rotating rigid body. On the other hand, the component (I4 − uuT)Gu
is the orthogonal projection of Gu in the plane normal to u. Here, the matrix
(I4 − uuT) projects arbitrary vectors in R

4 to TS
3, where TS

3 is the tangent
space of the 3-sphere S

3. In terms of the physically applied body torque GB ∈ R
3,

the generalized torque (I4 − uuT)Gu is expressed as (Udwadia & Schutte 2010a,b)

(I4 − uuT)Gu = H TGB , (2.33)

while the inverse relationship is given by

GB = 1
4
HGu . (2.34)

Finally, we point out that equation (2.24) is derived directly in terms of
the generalized coordinates (u, u̇), and in terms of the generalized torque Gu .
Alternatively, using equations (2.7), (2.12) and (2.33), we can express it in terms
of the unit quaternion u, the body angular velocity u and the physically applied
body torque GB as

(H TJH + x̄uuT)ü = H T(GB − ũJu) − x̄

4
N (u)u, (2.35)

where we have made use of the fact that N (u) = 4N (u̇). To get the generalized
acceleration ü explicitly, we apply equations (2.9), (2.11) and (2.21) to obtain

ü = 1
4
H TJ −1(GB − ũJu) − 1

4
N (u)u. (2.36)

Using this formulation in §3, we shall again use the fundamental equation
(equation (2.20)) to develop explicit, closed-form expressions for the control
torque required to rotate a rigid body from any initial rest orientation to any
desired rest orientation.

3. Rotational motion (orientation) control using quaternions

Consider a rigid body whose orientation at any time t is described by the unit
quaternion u(t). The body is free to pivot about its centre of mass. It is initially
at rest, and its orientation is given by the quaternion, uinitial := u(0). In what
follows, we shall determine the control torques so that this initial orientation,
uinitial, is changed to a desired orientation described by the quaternion ud, and
the body is brought to rest in this new desired orientation.
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The equation for the generalized acceleration (equation (2.36)) of the
unconstrained rigid body with GB = 0 is given by

ü = −1
4
H TJ −1ũJu − 1

4
N (u)u := a. (3.1)

To control the rigid body so that it acquires the orientation ud, we need to change
its acceleration from a so that

ü = a + g(t), u(0) = uinitial, u̇(0) = 0. (3.2)

The rigid body achieves the desired orientation when it reaches the constraint

4(t) := u(t) − ud = 0, (3.3)

which describes the control objective. As ud is any constant 4-vector in the set
ud ∈ S

3, and the body initially does not start on the constraint in equation (3.3),
we can approach this constraint using a modified constraint equation of the
form (a, b > 0)

4̈ + a4̇ + b4 = 0, (3.4)

where the 4 × 4 diagonal matrices a = diag(a0, a1, a2, a3) and b = diag(b0, b1,
b2, b3). Our intention in using this modified constraint is to take advantage of the
property that equation (3.4) has the asymptotically stable fixed solution (4, 4̇) =
(0, 0). The enforcement of this modified trajectory requirement will cause the
rotational trajectories to approach the constraint in equation (3.3) in the fashion
of a damped linear oscillator, where the choice of parameters in the matrices
a and b dictate the actual dynamical path taken. In fact, instead of equation
(3.4), we could choose other suitable second-order linear, or nonlinear, differential
equations that have the same asymptotically stable fixed point, and perhaps some
needed additional desirable dynamical features for rotating the rigid body to ud.

Using equation (3.3) in equation (3.4), we obtain

üi = −ai u̇i − bi(ui − ui,d), i = 0, 1, 2, 3. (3.5)

Equation (3.5) describes the desired independent paths for each of the quaternion
components. However, throughout the control manoeuvre the satisfaction of
equation (2.4) must also be guaranteed because the quaternion u(t) must have
a unit norm if it is to represent a physical rotation. Thus, in addition to the
modified trajectory constraints given by equation (3.5), we must also impose the
unit norm constraint. To achieve the control objective, we then desire that both
equations (2.4) and (3.5) are simultaneously satisfied.

In §3a,b, we present two different control strategies to handle this nonlinear
control objective. The first strategy deals with enforcing the unit norm constraint
(equation (2.4)) along with the modified control trajectories in equation (3.5)
for ui(t), i = 1, 2, 3 (i.e. only the vector part, u(t), of the quaternion). The
second strategy uses the full set of modified control trajectories in equation (3.5)
and casts the problem into permissible control form. This decouples the control
design from the unit norm constraint so that arbitrary controllers may be applied
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while ensuring that u(t) is a unit quaternion. In either strategy, we arrive at an
appropriately constructed constraint matrix equation

Aü = b. (3.6)

To exactly reorient the rigid body to ud, the fundamental equation then explicitly
gives the control acceleration g(t) as

g(t) = M−1/2(AM−1/2)+(b − Aa), (3.7)

where a is the acceleration given by equation (3.1). The resulting control torque
in the Lagrangian framework is found by

Gcontrol = Mg(t), (3.8)

or in the body-fixed coordinate frame by (Udwadia & Schutte 2010a,b)

GB = 1
4
HGcontrol = 1

4
HMg(t), (3.9)

where GB = [G1, G2, G3]T are the control torques about the body-fixed 1-, 2- and
3-principal directions. The descriptions of the A matrix and the b vector in
equation (3.6), which are different for the two control strategies, are discussed
in §3a,b.

(a) Controller strategy 1

In this strategy, to design the control g(t), we take the unit norm constraint
(equation (2.4)) along with the last three control objectives in equation (3.5) so
that the A matrix and b vector in equation (3.6) becomes

A =
⎡
⎢⎣

u0 u1 u2 u3
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ and b =

⎡
⎢⎢⎢⎣

− 1
4N (u)

−a1u̇1 − b1(u1 − u1,d)
−a2u̇2 − b2(u2 − u2,d)
−a3u̇3 − b3(u3 − u3,d)

⎤
⎥⎥⎥⎦. (3.10)

We begin by assuming that nowhere along the controlled trajectory does u0 = 0,
so that the A matrix in equation (3.10) is non-singular. The acceleration g1(t) is
then explicitly found by equation (3.7) and yields

g1(t) = 1
4
H TJ −1ũJu + 1

4
N (u)u + k. (3.11)

This relation follows as for non-singular matrices A and M, we have (AM−1/2)+ =
(AM−1/2)−1 so that

M−1/2(AM−1/2)+ = A−1 =
⎡
⎣ 1

u0

−uT

u0

0 I3

⎤
⎦. (3.12)
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The subscript ‘1’ on g indicates that we are dealing with control strategy 1. The
4-vector k = [k0, kT]T is then given by

u0ü0 = −1
4
N (u) + uTâu̇ + uTb̂(u − ud) := u0k0 (3.13)

ü = −âu̇ − b̂(u − ud) := k, (3.14)

where the diagonal 3 × 3 matrices â = diag(a1, a2, a3) and b̂ = diag(b1, b2, b3),
while the 3-vector, u = [u1, u2, u3]T. Equation (3.14) exactly represents our desired
constraint given by the last three equations in equation (3.10). Thus, the
fundamental equation yields the nonlinear controller in equation (3.11), which
causes the coordinates u1, u2 and u3 to independently converge to their respective
desired values given by the corresponding components of ud. The coordinate u0 is
found so that the unit norm constraint (equation (2.4)) is exactly satisfied at each
instant of time, as required by the first equation in the set (3.10). Furthermore,
we can immediately conclude stability of the controlled system in equations (3.13)
and (3.14). The three equations in equation (3.14), which are given in the form
of a simple damped linear oscillator, are asymptotically stable at the point ud

provided â > 0 and b̂ > 0. We can further deduce that the entire system given by
equations (3.13) and (3.14) is asymptotically stable at the two fixed points

u∗
1,2 = [±u0,d, uT

d ]T, (3.15)

where the coordinate u0,d =
√

1 − u2
1,d − u2

2,d − u2
3,d. We see that two fixed points

exist—a consequence of the ambiguity that results when solving for the coordinate
u0 using equation (2.4).

We now consider the case when u0 = 0. The matrix A in equation (3.10) now
becomes singular, and as a result, equation (3.6) is only consistent for those
vectors b that lie in the range space of the matrix A. Consistency is required
to ensure that the norm of the 4-vector u(t) is unity, and hence represents a
physical rotation. In fact, equation (3.13) points out that when u0 = 0, for finite
accelerations ü0, we require that

−1
4
N (u) + uTâu̇ + uTb̂(u − ud) = 0. (3.16)

In general, the satisfaction of this condition, which arises when u0 = 0, is not
possible for arbitrary values of ud, â and b̂. Thus, crossing the hyperplane u0 = 0
at any time t would generally result in a physically unrealizable rotation as the
modified trajectory requirements may not be consistent at u0 = 0.

Physically speaking, the hyperplane u0 = 0, which corresponds to principal
rotation angles of q = ±p, ±3p, . . ., appears to separate the two fixed points u∗

1,2
given in equation (3.15). The two fixed points are separated by the boundary

{u ∈ R
4|N (u) = 1 ∩ u0 = 0}, (3.17)

which is the space of rotations defined by the intersection of the hyperplane
u0 = 0 and the unit 3-sphere S

3. These results show that the controller given by
equation (3.11) causes rotational trajectories of the rigid body to occur on the
unit 3-sphere, and the rigid body will asymptotically approach one of the fixed
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points in equation (3.15). To control the rigid body on the boundary (3.17) the
condition in equation (3.16) must be satisfied. For rest-to-rest manoeuvres, the
sign of the coordinate u0 at the initial time determines the specific fixed point to
which the controller will rotate the rigid body. Yet, crossing the hyperplane u0 = 0
to achieve any given desired orientation, ud, is not necessary. If the quaternions
uinitial and ud have their first components (u0,initial and u0,d) of opposite sign,
then one merely commands the controller to orient the body to the diametrically
‘opposite’ quaternion, −ud, on S

3 which corresponds to precisely the same physical
orientation as the quaternion ud. Thus, through a proper representation of the
desired target quaternion, one can ensure global stability of the control. Moreover,
the orientation of the hyperplane relative to S

3 can be predetermined by varying
the quaternion component combinations in the set (3.10).

(b) Controller strategy 2

In many instances, it may be desirable to control the rigid body in the entire set
S

3 = {u ∈ R
4|N (u) = 1}, such that no restriction on its motion exists. In control

strategy 1, this task is difficult because the condition in equation (3.16) must be
satisfied when u0 = 0 on S

3. This effect is a direct result of constraint specification.
While this problem can be obviated, as pointed out above, by choosing the target
quaternion to be −ud instead of ud, it is however a source of inconvenience.
Quite often it is required to specify constraints that represent two different
categories: namely (i) constraints that model the system, and (ii) constraints
that control the system. These two categories of constraints need to be distinctly
conceptualized as they arise from very different sources. The constraints that
model the physical system must always be satisfied, otherwise the dynamical
model of the system would be invalid. On the other hand, the control constraints
specify the desired trajectory of the physical system. These constraints are often
set out, as convenient, so that a desired objective may be satisfied, and the actual
trajectory of the controlled system can often be allowed to mildly deviate from
the prescribed trajectory as long as the objective is nonetheless met. For example,
to achieve stable control to the desired quaternion (our control objective), it is
not necessary to specify exact trajectories along the curved surface of S

3. We
can design simpler trajectories such as straight line trajectories to the desired
quaternion, ud. As shown in past work (Schutte 2010), such control systems are
easily handled when they are cast into the so-called permissible control form as
we shall see in the subsequent development.

To develop this second control strategy, we begin by considering the modified
constraints in equation (3.5) in the form of equation (3.6) so that

Â = I4 and b̂ = −au̇ − b(u − ud), (3.18)

where Â and b̂ denote the control constraints. The generalized control torque Ĝ(t)
that causes each component of u to independently approach ud is explicitly found
using the fundamental equation so that

Ĝ(t) = M1/2(ÂM−1/2)+(b̂ − Âa)

= M(b̂ + 1
4
H TJ −1ũJu + 1

4
N (u)u). (3.19)
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In particular, this control force governs the prescribed control paths that we have
arbitrarily chosen for each of the quaternion components. Indeed, this control
force does not satisfy the unit norm constraint in equation (2.4). To satisfy
equation (2.4), we cast the system into permissible control form (Schutte 2010)
so that the controlled system becomes

ü = a + M−1PĜ(t). (3.20)

The matrix P in equation (3.20) is a projection operator that exists because of the
presence of the quaternion unit-norm modelling constraint as given by equation
(2.17). It ensures that the modelling constraints are satisfied at each instant of
time regardless of the control inputs that are applied to the system. For A = uT

and B = AM−1/2, P is given explicitly by

P = I4 − M1/2B+BM−1/2 = I4 − uuT, (3.21)

where we have used the identities in equations (2.9) and (2.21). In permissible
control form (equation (3.20)), the explicit rotational equations of motion of the
controlled system are then

ü = −1
4
N (u)u + (I4 − uuT)b̂. (3.22)

The control acceleration g2(t) (the subscript 2, again, reminds us that we are
dealing with our second control strategy) is therefore given by

g2(t) = M−1PĜ(t) (3.23)

= 1
4
H TJ −1ũJu + (I4 − uuT)b̂.

Though seemingly simple, the behaviour of the controlled nonlinear dynamical
system described by equation (3.22) can be quite complex. In this paper, we shall
concentrate on the fixed points of this system and their stability. The fixed points
are given by u̇ = 0 and any 4-vector u∗ = u that satisfies the equation

(I4 − uuT)b(u − ud) = 0, (3.24)

where we recall that both quaternions u and ud are unit quaternions. One obvious
solution to equation (3.24) is the isolated fixed point u∗ = ud. In general, for some
real scalar r, the satisfaction of equation (3.24) requires that the vector

b(u − ud) = ru, (3.25)

as u is a unit quaternion and consequently (I4 − uuT) is the orthogonal projection
operator that projects any vector v ∈ R

4 onto a plane normal to the 4-vector u.
Re-arranging, equation (3.25) becomes

(b − rI4)u = bud. (3.26)

The general solution to equation (3.26) is

u = G+bud + (I4 − G+G)h, (3.27)

where G = (b − rI4) and h is an arbitrary 4-vector. Observe that the solutions in
equation (3.27) depend upon the values of r, b and ud. Also, note that the matrix
G is not invertible only when r = bi , i = 0, 1, 2, 3. By inspection of equation (3.26),
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we see that this could only occur when ud has one or more zero components. When
G is invertible, equation (3.27) becomes

ui = bi

bi − r
ui,d, i = 0, 1, 2, 3. (3.28)

The values u∗ are found by first determining those real values of r that satisfy

3∑
i=0

(
bi

bi − r

)2

u2
i,d = 1, (3.29)

and subsequently using equation (3.28). A solution of equation (3.29) is always
r = 0, which corresponds to u∗ = ud, a result we have already obtained by
inspection of equation (3.24).

When the diagonal matrix G is singular, we can assume that r = bi for some i ∈
{0, 1, 2, 3}. For consistency of equation (3.26), this requires that ui,d = 0. Without
loss of generality, let us assume that r = b3 and, initially, bi �= b3, i = 0, 1, 2. The
solution of equation (3.26) then becomes

ui = bi

bi − b3
ui,d, i = 0, 1, 2, u3 = h3, (3.30)

where a real h3 is sought by equation (3.29). Depending on the values of b, this
could yield two additional isolated fixed points. If r = b3 = b2 and bi �= b3, i = 0, 1,
then we have the solutions

ui = bi

bi − b3
ui,d, i = 0, 1, u2 = h2, u3 = h3, (3.31)

where again the values of h2 and h3, hereto arbitrary, are determined by seeking
real solutions to equation (3.29). Here, for consistency, we require that u2,d =
u3,d = 0. Depending on the values of b this could yield, in addition to isolated
fixed points, a circle of non-isolated fixed points. Similarly, if r = b3 = b2 = b1,
which requires u1,d = u2,d = u3,d = 0, the solution to equation (3.26) is

u0 = b0

b0 − b3
u0,d, u1 = h1, u2 = h2 and u3 = h3. (3.32)

In addition to the isolated fixed points and the circle of non-isolated fixed points,
we could then have a sphere of non-isolated fixed points. Thus, a multiplicity
of isolated and non-isolated fixed points may exist depending on our choice of
the control parameters bi and the desired quaternion ud. For example, when
the control parameters bi are chosen to be identical so that b = b0I4, then r =
2b0 satisfies equation (3.29) and yields u∗ = −ud as another fixed point of the
controlled system. In fact, when bi are all identical, the only solutions to equation
(3.26) are u∗ = ±ud, and so this particular controller has only two fixed points.

The stability of the controlled system in equation (3.22) is now investigated at
the fixed point of interest (u̇ = 0, u∗ = ud). We shall assume, for simplicity, that
either all the bi ’s are identical, or that they are all distinct, so that we always
have a set of isolated fixed points. Let

u(t) = ud + z(t), (3.33)
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where u(t) is a perturbed trajectory of the rotating rigid body. The equation
governing the perturbation then becomes

z̈ = −N (ż)(ud + z) + [I4 − (ud + z)(ud + z)T](−aż − bz). (3.34)

Consider now the Lyapunov function V (z, ż) = 1
2zTbz + 1

2 żTż, which is positive
for z, ż �= 0 as b is positive definite. Differentiating V with respect to time, we get

V̇ = żTbz + żTz̈

= −żTaż − N (ż)żT(ud + z) − żT(ud + z)(ud + z)T(−aż − bz). (3.35)

We find that (ud + z)T(ud + z) = 1 as the perturbed trajectory u(t) describes a
rotational motion, and upon differentiating with respect to time, we have żT(ud +
z) = 0. Equation (3.35) then reduces to

V̇ = −żTaż, (3.36)

which is negative semi-definite. To show asymptotic stability, we consider
LaSalle’s theorem. In the vicinity of the fixed point z = 0, let us choose a suitably
small region D. This region is positively invariant as V is positive definite and
V̇ ≤ 0. Moreover, in this region D, when V̇ = 0, we have ż = 0 by equation (3.36).
By equation (3.26), the set

W = {z ∈ D|V̇ = 0, N (ud + z) = 1} (3.37)

that contains all values of z ∈ D and satisfies the equation

[I4 − (ud + z)(ud + z)T]bz = (I − uuT)bz = 0 (3.38)

has only one invariant trajectory z = 0. This is because the solution, z, of
equation (3.38) is, as before, of the general form

z = rb−1u, (3.39)

for some real scalar r, such that N (ud + z) = 1. The value z = 0 is always an
isolated solution of equation (3.39); the other values of r are found from equations
(3.30)–(3.32). These fixed points are isolated as the parameters bi are assumed
distinct. We see that the largest (only) invariant set in W is then given by z = 0,
making this point, and hence u∗ = ud, asymptotically stable.

4. Numerical examples

In this section, numerical examples are provided to show the efficacy of the two
control methodologies presented in the last section for a rigid body with principal
inertias J1 = 100, J2 = 200 and J3 = 250 kg m2. The simulations are carried out
starting from an initial orientation, uinitial, for rest-to-rest manoeuvres so that
u̇initial = 0, and the final desired (rest) orientation is ud.

(a) Controller strategy 1

Here, we employ the first controller obtained in equation (3.11) to the system
given by equation (3.2). Using this approach, the equations of motion of the
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Figure 1. Controller strategy 1: rotational trajectories (dotted lines) on a unit 2-sphere. (a)
Rotational trajectories shown on S

2 converging to the fixed points in equation (3.15). The small
dark grey sphere denotes the desired orientation ud and the small light grey cube denotes the
undesirable orientation. (b) Rotational trajectories shown on S

2 converging to the fixed points ud
and −ud. The small dark grey sphere denotes the desired orientation ud and the small light grey
cube denotes the diametrically opposite quaternion −ud, which corresponds to the same physical
orientation.

controlled system were found by assuming u0 �= 0 in equations (3.13) and (3.14).
First, we consider the desired quaternion ud = [1/

√
3, 1/

√
3, 0, 1/

√
3]T. In order

to visualize the controlled trajectories, we shall assume that the rigid body rotates
in the set {u ∈ R

3|N (u) = 1, u2 = 0}. This allows us to plot rotational trajectories
on the unit 2-sphere, S

2, given by u2
0 + u2

1 + u2
3 = 1. The control parameters are

chosen as

â = diag
(

3
5
,

9
20

,
9
25

)
and b̂ = diag

(
1
9
,

1
16

,
1
25

)
. (4.1)

Figure 1 shows the resulting rotational trajectories on the unit 2-sphere for
various initial quaternions near the boundary given by equation (3.17). The
control maintains u2(t) = 0 throughout the manoeuvre. In figure 1a, trajectories
are seen to converge to the fixed points u∗

1,2 in equation (3.15). The figure also
shows the intersection of the unit 2-sphere and the hyperplane u0 = 0. When the
4-vector uinitial is such that u0,initial > 0, the trajectories converge to ud if u0,d > 0,
where ud is denoted by the small dark grey sphere. When u0,initial < 0 and u0,d > 0,
the trajectories converge to the undesirable orientation denoted by the small
light grey cube. As explained before, in this case it is not necessary to cross
the hyperplane u0 = 0 in order to reach the desired target orientation as we can
represent the desired quaternion location as −ud as shown in figure 1b.

We next consider a rigid body reorientation starting from a more general
initial quaternion uinitial = [3/10, −1/5, 7/10,

√
38/10]T to reorient to the desired

quaternion ud = [9/10, 1/5, −3/10, −3/10]T using â and b̂ given in equation (4.1).
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Figure 2. Controller strategy 1. (a) The rotation (components of the 4-vector, u(t)) generated by
the control acceleration that is explicitly given by equation (3.11) as a function of time. Solid line,
u0; dashed line, u1; dotted line, u2; dashed-dotted line, u3. (b) Components of the control torque
about the body-fixed axes given by equation (3.9). Solid line, G1; dashed line, G2; dotted line, G3.
(c) uTu − 1 (solid line) and uTu̇ (dashed line) as a function of time. Note the vertical scale.

Figure 2a shows the components of the quaternion u(t) as a function of time
over a duration of t = 30 s. Figure 2b gives the components of the control torques
(equation (3.9)) about the body-fixed axes required to accomplish this change in
orientation. The extent to which the quaternion u(t) remains a unit quaternion,
as is required, during the control manoeuvre is shown in figure 2c. Noting the
vertical scale, the unit norm constraint is satisfied to the same numerical order
of accuracy as the local error tolerance used in numerically integrating equations
(3.13) and (3.14).

(b) Controller strategy 2

We now apply the second controller strategy given by equation (3.23) to the
system in equation (3.2). This controller strategy is highlighted by considering
the following two examples.
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Figure 3. Controller strategy 2 (bi = 1/8, i = 0, 1, 2, 3): rotational trajectories (dotted lines) on S
2.

The stable fixed point u∗ = [1, 0, 0, 0]T is denoted by the small dark grey sphere and the unstable
fixed point u∗ = [−1, 0, 0, 0]T is denoted by the small light grey cube.

(i) Identical bi

When the parameters of the diagonal matrix b are chosen so that b = b0I ,
the controlled system has two fixed points, namely, the asymptotically stable
fixed point u∗

1 = ud and a second fixed point u∗
2 = −ud, as we have seen in

equations (3.28) and (3.29). In this example, we shall assume that the desired
quaternion is ud = [1, 0, 0, 0]T. The fixed points of the controlled system are then
u∗

1,2 = ±[1, 0, 0, 0]T. The diagonal matrices a and b are taken to be

a = diag

(√
2

2
,

2√
3
,
2
√

2√
7

,
2√
2

)
(4.2)

and

b = diag
(

1
8
,
1
8
,
1
8
,
1
8

)
. (4.3)

As before, we visualize the rotational trajectories on the unit 2-sphere, S
2, as

shown in figure 3. Rotational trajectories starting from various initial orientations
that are near the unstable fixed point u∗

2 = [−1, 0, 0, 0]T are shown (see the
appendix, table 1). The rotational trajectories u(t) corresponding to the initial
quaternion uinitial = [−199/200, 5/100, 0,

√
299/200]T are shown in figure 4a.

Also, for the same initial quaternion, the control torques about the body-fixed
coordinate axes required to accomplish the manoeuvre are shown in figure 4b.
Figure 4c shows the extent to which the quaternion u(t) satisfies the unit
norm condition.

(ii) Distinct bi

In this example, the diagonal matrix b is taken to be

b = diag
(

1
8
,
1
3
,
2
7
,
1
2

)
. (4.4)
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Figure 4. Controller strategy 2 (bi = 1/8, i = 0, 1, 2, 3.) (a) The rotation (components of the 4-
vector, u(t)) generated by the control acceleration that is explicitly given by equation (3.23)
as a function of time. Solid line, u0 dashed line, u1; dotted line, u2; dashed-dotted line, u3. (b)
Components of the control torque about the body-fixed axes given by equation (3.9). Solid line,
G1; dashed line G2; dotted line, G3. (c) uTu − 1 (solid line) and uTu̇ (dashed line) as a function of
time. Note the vertical scale.

The desired quaternion is again ud = [1, 0, 0, 0]T while the diagonal matrix a
is again given by equation (4.2). Given the values ud and b, we can find
all the (real) fixed points of the controlled system as outlined in §3. In this
problem, equations (3.28) and (3.29) yield the isolated fixed points u∗

1,2 =
[±1, 0, 0, 0]T. In addition, as ud contains zero components and the matrix b
contains no repeated values, we have the possible values r = bi , i = 1, 2, 3. The
isolated fixed points corresponding to these values of r are given by u∗

3,4 =
[−3/5, ±4/5, 0, 0]T, u∗

5,6 = [−7/9, 0, ±4
√

2/9, 0]T and u∗
7,8 = [−1/3, 0, 0, ±2

√
2/3]T,

respectively, for i = 1, 2, 3. Thus, this particular reorientation control problem
yields a total of eight isolated fixed points. All of these fixed points are found
to be unstable except the ones at u∗

1,2 = [±1, 0, 0, 0]T (see the appendix, table 2).
Therefore, the controlled system is stable at the two fixed points ±ud, which,
we recall, represent the same desired physical orientation. We see that the
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Figure 5. Controller strategy 2 (b0 = 1/8, b1 = 1/3, b2 = 2/7, b3 = 1/2): rotational trajectories (dotted
lines) on a unit 2-sphere. (a) Rotational trajectories on S

2 when u2 = 0. The two small dark grey
spheres denote the fixed points ±ud. The four small light grey cubes denote the fixed points u∗

3,4
and u∗

7,8. (b) Rotational trajectories on S
2 when u3 = 0. The two small dark grey spheres denote

the fixed points ±ud. The four small light grey cubes denote the fixed points u∗
3,4 and u∗

5,6.

desired orientation ±ud appears to be (generically) globally stable. Figure 5
shows rotational trajectories with various initial conditions near the unstable
fixed points u∗

3,4, u∗
5,6 and u∗

7,8, which are denoted by the light grey cubes (see the
appendix). In figure 5a,b, rotational trajectories are seen to converge to the two
stable fixed points u∗

1,2 = ±ud denoted by the dark grey spheres. The unstable
fixed points are saddle nodes (see the appendix), and in each of these figures
we have shown saddle connections in which heteroclinic trajectories connect the
saddle points.

5. Conclusions

This paper deals with the rotational dynamics and control of rigid bodies and uses
quaternions to describe and control their orientation. By viewing such rotational
motions in terms of the theory of constrained motion, it provides a new and unified
framework for understanding both the rotational dynamics and the rotational
control of rigid bodies. It permits the development of numerous control strategies,
of which two have been explored in some detail here.

The main contributions of this paper are the following:

— A simple three-step approach for deriving Lagrange’s equations for
rotational motion of a rigid body using the fundamental equation, which
explicitly provides the equation of motion for constrained mechanical
systems. An explicit equation giving the generalized acceleration of a
rotating body in terms of quaternions is also obtained.

— The simplicity and ease with which this same fundamental equation can
yield the explicit, closed form, control torque needed to be applied to a
rigid body in order to change its orientation. This places both the dynamics
and the control aspects of rigid body rotational motion under one simple
and overarching framework.
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— The development of two control strategies to reorient a rigid body, starting
from an arbitrary rest orientation and controlling it to move to another
arbitrary rest orientation. The first strategy allows the stabilization to the
constraint manifold to occur exactly along a pre-selected trajectory that is
desired for the quaternion components ui , i = 1, 2, 3, while ensuring that u
remains a unit quaternion. The second control strategy initially prescribes
trajectories for each of the quaternion components independently (thereby
specifying, in general, an inconsistent and non-physical trajectory). The
dynamics are then modified by casting the controller into permissible
control form, thereby correcting for, and developing the correct dynamics,
and with it, the explicit control torque.

— The explicit nature of the equations obtained for the controlled rigid body
allows a detailed analysis of the resulting nonlinear dynamical system
that describes the control action. By representing the desired target
quaternion appropriately, the first control strategy appears to be globally
stable so that the rigid body can be controlled to rotate from any initial
(rest) orientation to any final (rest) orientation. The controlled nonlinear
dynamical system resulting from the second strategy shows that depending
on the parameter values bi , it could have a multiplicity of fixed points,
whose detailed localization is presented. Their stability depend upon the
parameters bi chosen.

— Numerical examples illustrating the ease of implementation of the two
nonlinear controllers are presented. We note the accuracy with which
the closed-form control meets the desired objective of rotating a rigid
body from one given orientation to another desired orientation while
maintaining the unit norm of the quaternion throughout the manoeuvres
to be exactly unity.

Appendix A. Stability of the fixed points for controller strategy 2

To investigate the stability of the isolated fixed points in our numerical examples,
let us consider equation (3.20) as a system of eight first-order differential
equations in phase space, of the form ẋ = f (x), where the state vector x =
[u0, u̇0, u1, u̇1, u2, u̇2, u3, u̇3]T. Linearization of this eight-dimensional dynamical
system about the fixed point x∗, so that y(t) = x∗ + z(t), requires some care,
because the linearized dynamics is required to be restricted to the manifold
N (x∗ + z) = 0. Thus, one must use the restriction of the Jacobian operator of
the aforesaid differential equation to this manifold in phase space. This leads to
the 6 × 6 restricted Jacobian matrix, J , given by

ż = vf
vx

∣∣∣∣ z=0
N (x∗+z)=0

z := J z. (A 1)

The eigenvalues li , i = 1, 2, . . . , 6, of J yield information on the stability of the
fixed points x = x∗.

Using a and b in equations (4.2) and (4.3), the numerically computed
eigenvalues at the two fixed points for the linearized controlled system that is
restricted to the manifold N (x∗ + z) = 0 are given in table 1. From this table, we
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Table 1. Eigenvalues of J for controller strategy 2 with identical bi .

fixed point eigenvalues

u∗
1 = [1, 0, 0, 0]T l = [−0.10, −0.12, −0.13, −0.94, −1.03, −1.32]T

u∗
2 = [−1, 0, 0, 0]T l = [0.11, 0.01, 0.08, −1.18, −1.25, −1.50]T

Table 2. Eigenvalues of J for controller strategy 2 with distinct bi .

fixed point eigenvalues

u∗
1 = [1, 0, 0, 0]T l = [−0.53, −0.53, −0.58, −0.58, −0.71, −0.71]T

u∗
2 = [−1, 0, 0, 0]T l = [−0.03, −0.08, −0.21, −1.03, −1.08, −1.21]T

u∗
3,4 =

[
−3

5
, ±4

5
, 0, 0

]T
l = [0.13, 0.04, −0.13, −1.00, −1.11, −1.28]T

u∗
5,6 =

[
−7

9
, 0, ±4

√
2

9
, 0

]T

l = [0.06, −0.04, −0.17, −0.99, −1.11, −1.24]T

u∗
7,8 =

[
−1

3
, 0, 0, ±2

√
2

3

]T

l = [0.31, 0.17, 0.13, −1.09, −1.24, −1.28]T

see that the fixed point (u∗
1 = ud, u̇∗

1 = 0) is a stable node, while the fixed point
(u∗

2 = −ud, u̇∗
2 = 0) is an unstable saddle node (figure 3).

The numerically computed eigenvalues of J when the parameters bi are given
by equation (4.4) are shown in table 2. The two fixed points (u∗

1,2 = ±ud, u̇∗
1,2 = 0)

are stable while the remaining six fixed points are unstable.
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